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MOVEMENT ON A TRANSPORT LINE 
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Abstract: The aim of this paper is a stochastic dynamic solution for the movement of a load on a 
transport line. The movement of a load begins on an inclined plane, then it proceeds on a horizontal 
plane and ends with its stop (bump) into a spring. Basic inputs and outputs are given by statistical 
histograms, which describe the real variability of the variables with sufficient accuracy. The obtained 
results (e.g. velocity, acceleration, impact forces, etc.) provide real information needed to evaluate the 
design options of a transport line. The practical solution is done using the Monte Carlo Method. This 
work is of importance in the "Karakuri" solution of technical design, or eventually for transport line 
solutions for a company's production. 
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1.  Introduction 

Transport lines based on the "Karakuri" or gravitational principle have great advantages in terms of 
efficiency, as they do not need electric power, complex automatization or human resources. Ideally, 
the transport line should operate completely without any external interferences. Using a stochastic 
(probabilistic) approach, the real application of the transport line can be considered, according to the 
actual possibilities of the operation, see Fig.1. For example, load weight, initial conditions, friction 
ratios, etc. may vary over time (whether scheduled or unplanned) during everyday operation. For this 
reason, it is advisable to apply a probabilistic method in the design, e.g. the Monte Carlo method, and 
try to describe and evaluate all possible states of a line. 

In our case, we are solving the final stage of 
manufactured product (load) transport, where 
these loads move along the transport line and 
hit against an elastic spring element, whose 
function is to minimize the impact. The aim is 
to compile and solve the kinetic equations of 
the dynamics using the probabilistic Monte 
Carlo Method, where the variability of results 
obtained gives the designers an appropriate 
description of the real situation for the design 
and helps them to evaluate the possibilities for 
optimizing its operation. 
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2. Input Variables 

As input values, the following variables are selected, see Fig.2 and Tab.1. 

 
Fig. 2: Model diagram illustrating moving of a load 

Tab. 1: Input Variables 

Quantity Value Distribution functions: Histogram 

Load weight 𝑚𝑚 [kg] 100 ± 30 Normal distribution  
Plane inclination 𝛼𝛼 [°] 30 ±3 Normal distribution  
Starting position of load 𝐻𝐻 [m] 1 ± 0.1 Normal distribution  
The initial velocity of a load 
𝑣𝑣0 [ms−1] 0.1−0.1

+0  Uniform distribution  

Initial load path 𝑠𝑠0 [m] 0.1−0.1
+0  Uniform distribution  

Inclined plane friction coefficient 
(section 1) 𝑓𝑓1 [1] 0.2±0.02 Normal distribution  
Horizontal plane friction 
coefficient (section 2) 𝑓𝑓2 [1] 0.1±0.01 Normal distribution  
Horizontal plane friction 
coefficient (section 3) 𝑓𝑓3 [1] 0.3±0.03 Normal distribution  
Horizontal trajectory to impact 𝑙𝑙2 
[m] 4±0.4 Normal distribution  

Spring constant 𝑘𝑘 [Nm] 1000±200 Normal distribution  
Gravity acceleration 𝑔𝑔 [ms−2] 9.807−0.027

+0.025 Uniform distribution  
Start time 𝑡𝑡0 [s] 0 

3. Dynamic Model Derivation 

The analytical model must be divided into three sections, see Fig.2 and Tab.2, time 𝑡𝑡 ∈< 𝑡𝑡0, 𝑡𝑡1 >, 
<  𝑡𝑡1, 𝑡𝑡2 > and < 𝑡𝑡2, 𝑡𝑡3 > [s] (i.e. the solution of the three differential equations of the dynamics are 
derived in accordance with the normal procedures used for solid mechanics); the first section is the 
movement of load along the inclined plane, the second movement along the horizontal plane and the 
last section is the movement along the horizontal plane with a subsequent impact on the spring, where 
the solution of the line ends by stopping the whole body. The result of this paper is a stochastic 
evaluation of the trajectory motion, speed, acceleration, the time of the load motion, force ratios, 
impact and spring compression. 
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Tab. 2: Derived solution 

Where: 𝑡𝑡= time [s], 𝑣𝑣1,2,3= Velocity at the end of the integration step [ms−1],  𝑠𝑠1,2,3= Trajectorys at 
the end of the integration step [m], 𝑡𝑡1,2,3= Times at the end of the integration step [s]. 

4. Application of the Probabilistic Method to Dynamic Model 

The Monte Carlo method was used to solve all three sections (Anthill sw) for 106 random simulations 
according to the relations in Tab.2, see Fig 3 to 6. The essential results obtained are the values of the 
instant velocity in the moment of the impact of the load on the spring, the spring compression and the 
force which the spring develops, and also the total time of the movement. 

Forces: 𝐹𝐹𝑥𝑥1 = 𝑚𝑚𝑔𝑔 sin(𝛼𝛼) ,𝐹𝐹𝑡𝑡1 = 𝑓𝑓1 𝑚𝑚𝑔𝑔 cos(𝛼𝛼) ,𝐹𝐹𝑡𝑡2,3 = 𝑚𝑚𝑔𝑔𝑓𝑓2,3 
First section: Uniformly 

accelerated motion 𝑡𝑡 ∈ < 𝑡𝑡0, 𝑡𝑡1 >, 𝑠𝑠1 = 𝐻𝐻
cos(𝛼𝛼) + 𝑠𝑠0  see Fig.2 

Equation of acceleration: 𝑎𝑎 =
 𝑑𝑑2𝑠𝑠
𝑑𝑑𝑡𝑡2

=
𝑑𝑑𝑣𝑣
𝑑𝑑𝑡𝑡

= 𝑣𝑣
𝑑𝑑𝑣𝑣
𝑑𝑑𝑠𝑠

=
𝐹𝐹𝑥𝑥1 − 𝐹𝐹𝑡𝑡1

𝑚𝑚
 

Velocity equation: 𝑣𝑣 =
𝑑𝑑𝑠𝑠
𝑑𝑑𝑡𝑡

=
𝐹𝐹𝑥𝑥1 − 𝐹𝐹𝑡𝑡1

𝑚𝑚
𝑡𝑡 + 𝑣𝑣0 

Trajectory equation: 𝑠𝑠 =
𝐹𝐹𝑥𝑥1 − 𝐹𝐹𝑡𝑡1

𝑚𝑚
𝑡𝑡2

2
+ 𝑣𝑣0𝑡𝑡 + 𝑠𝑠0 

Velocity equation at the end 
of the first section: 𝑣𝑣1 = �2�

𝐹𝐹𝑥𝑥1 − 𝐹𝐹𝑡𝑡1
𝑚𝑚

(𝑠𝑠1 − 𝑠𝑠0) +
𝑣𝑣02 

2 � 

Time at the end of the first 
section𝑡𝑡1. 𝑡𝑡1 =

(𝑣𝑣1 − 𝑣𝑣0)𝑚𝑚
𝐹𝐹𝑥𝑥1 − 𝐹𝐹𝑡𝑡1

 

Second section: Uniformly 
slowed motion 𝑡𝑡 ∈ < 𝑡𝑡1,  𝑡𝑡2 >, 𝑠𝑠2 = 𝑠𝑠1 + 𝑙𝑙2; see Fig.2 

Equation of acceleration: 𝑎𝑎 =
 𝑑𝑑2𝑠𝑠
𝑑𝑑𝑡𝑡2

=
𝑑𝑑𝑣𝑣
𝑑𝑑𝑡𝑡

= 𝑣𝑣
𝑑𝑑𝑣𝑣
𝑑𝑑𝑠𝑠

= −
𝐹𝐹𝑡𝑡2
𝑚𝑚

 

Velocity equation: 𝑣𝑣 =
𝑑𝑑𝑠𝑠
𝑑𝑑𝑡𝑡

= 𝑣𝑣1 +
𝐹𝐹𝑡𝑡2
𝑚𝑚

(𝑡𝑡1 − 𝑡𝑡) 

Trajectory equation: 𝑠𝑠 = �𝑣𝑣1 +
𝐹𝐹𝑡𝑡2
𝑚𝑚
𝑡𝑡1� 𝑡𝑡 −

𝐹𝐹𝑡𝑡2
𝑚𝑚

(𝑡𝑡12 + 𝑡𝑡2) + 𝑠𝑠1 − 𝑣𝑣1𝑡𝑡1 

Velocity at the end of the 
second section 𝑣𝑣2: 𝑣𝑣2 = �2�

𝑣𝑣12

2
+
𝐹𝐹𝑡𝑡2
𝑚𝑚

(𝑠𝑠2 − 𝑠𝑠1)� 

Time at the end of the second 
section 𝑡𝑡2: 𝑡𝑡2 =

(𝑣𝑣2 − 𝑣𝑣1)𝑚𝑚
𝐹𝐹𝑡𝑡2

+ 𝑡𝑡1 

Third section: 𝑡𝑡 ∈ < 𝑡𝑡2, 𝑡𝑡3 >, 𝑣𝑣3 = 0; viz Fig.2 

Equation of acceleration: 𝑎𝑎 =
−𝐹𝐹𝑡𝑡3 − 𝑘𝑘(𝑠𝑠 − 𝑠𝑠2)

𝑚𝑚
; 

Velocity equation: 𝑣𝑣 = 𝑣𝑣2 𝑐𝑐𝑐𝑐𝑠𝑠�𝛺𝛺𝑜𝑜(𝑡𝑡 − 𝑡𝑡2)� −
𝐹𝐹𝑡𝑡3
𝑘𝑘
𝛺𝛺0 𝑠𝑠𝑠𝑠𝑠𝑠(𝛺𝛺0(𝑡𝑡 − 𝑡𝑡2)); Ω𝑜𝑜 = �𝑘𝑘

𝑚𝑚
 

Trajectory equation: 𝑠𝑠 =
𝑣𝑣2
𝛺𝛺0

𝑠𝑠𝑠𝑠𝑠𝑠(𝛺𝛺𝑜𝑜(𝑡𝑡 − 𝑡𝑡2)) +
𝐹𝐹𝑡𝑡3
𝑘𝑘
𝑐𝑐𝑐𝑐𝑠𝑠(𝛺𝛺(𝑡𝑡 − 𝑡𝑡2)) −

𝐹𝐹𝑡𝑡3
𝑘𝑘

+ 𝑠𝑠2 

Time at the end of the third 
section 𝑡𝑡3: 𝑡𝑡3 =

atan � 𝑣𝑣2𝑚𝑚Ω0𝐹𝐹𝑡𝑡3
�

Ω0
+ 𝑡𝑡2 

Total trajectory of the load 𝑠𝑠3: 𝑠𝑠3 =
𝑣𝑣2
𝛺𝛺0

𝑠𝑠𝑠𝑠𝑠𝑠(𝛺𝛺𝑜𝑜(𝑡𝑡3 − 𝑡𝑡2)) +
𝐹𝐹𝑡𝑡3
𝑘𝑘
𝑐𝑐𝑐𝑐𝑠𝑠(𝛺𝛺(𝑡𝑡3  − 𝑡𝑡2)) −

𝐹𝐹𝑡𝑡3
𝑘𝑘

+ 𝑠𝑠2 
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Fig.3 Motion Time (stopping the load)                        Fig.4 Spring Impact Velocity 

𝑡𝑡3 = 2.853−0.357
+0.707 𝑠𝑠              𝑣𝑣2 = 2.226−1.346

+0.835 𝑚𝑚𝑠𝑠−1 

         
Fig.5 Total trajectory of the load (in time 𝑡𝑡3)      Fig.6 Directional force of the spring 

𝑠𝑠3 = 6.517−0.751
+0.736 m                                                   𝐹𝐹𝑘𝑘 = 𝑘𝑘(𝑠𝑠3 − 𝑠𝑠2) = 466.2−367.6

+332.3 N                    

For example, the probabilistic reliability assessment can be carried out by means of the reliability 
function RF = 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 – 𝐹𝐹𝑘𝑘 , where 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 [N] is the maximum allowable force in spring. 
Hence, the probability of failure is the probability that 𝐹𝐹𝑘𝑘 will exceed 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, i.e. Pf = P(RF ≤ 0). 

5. Conclusion 

Using the stochastic approach, it was possible to model a dynamic system for the load travel on the 
transport line, including stopping the load with an impact. The results obtained give a real idea of the 
interaction properties for the transport line and the load, and these are a valuable source of information 
when designing operation, redeveloping or optimizing a production process. This means that e.g. 
during operation, you can expect a traffic time between 2.853−0.357

+0.707 s or impact force 𝐹𝐹𝑘𝑘 in the range 
466.2−367.6

+332.3 N. Stochastic mechanics is not a very common method used in engineering designs. For 
this reason, the presented procedures represent a benefit, as they are in line with the latest trends in 
science and research. Further experience with stochastic modelling can be found in e.g. Cienciala 2017 
and Frydrýšek 2017. 
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